- Title
 - Cultural event classification using deep convolutional neural network
- Team details
 - Team name
 - Sungbin Choi
 - Team leader name
 - Sungbin Choi
 - Team leader address, phone number and email
 - 102-dong 1901-ho, 34, Beobwonbuk-ro, Yeonje-gu, Busan, Republic of Korea
 - 82-10-9216-0213
 - sungbinchoi06@gmail.com, wakeup06@empas.com
 - Rest of the team members
 - ♦ None
 - Team website URL
 - ♦ None
 - Affiliation
 - ♦ None
- Contribution details
 - Title of the contribution
 - Cultural event classification using deep convolutional neural network
 - Final score
 - Unknown at the time of writing
 - General method description
 - Deep convolutional neural network (CNN) is used for image cultural event

classification

- We used Caffe library for experimentation.
- I assumed this task as multiclass image classification problem
- ♦ 1. Finetuning
 - We started training(finetuning) using GoogLeNet which is pretrained on ImageNet database.
 - In addition to the training set provided by Codalab, we utilized below listed publically available dataset. These dataset images are used as 'None class' labeled image while training.
 - ImageNet database
 - MIRFLICKR-1M dataset
 - We partitioned dataset into 10-fold, so 9 fold is used as training set and remaining 1 fold is used as validation set. Theoretically, we can train 10 models by switching validation set fold. But due to the shortage of computing resource and time, we trained only 4 models.
- 2. Combining output scores from trained models
 - Output scores (predicted age) from 4 trained models are summed to produce output classification score
- References
 - ◆ Caffe : http://caffe.berkeleyvision.org/
 - ImageNet : http://www.image-net.org/
 - MIRFLICKR-1M dataset : http://press.liacs.nl/mirflickr/
- Describe data preprocessing techniques applied (if any)
 - For training data augmentation in deep learning model training, each image is randomly resized to 224 ~ 291 pixel (per each side), random mirroring (left-right flipping of image) is applied, then 224 pixel (per each side) image window is randomly cropped.
- Data Preprocessing

- Describe features used or data representation model (if any)
 - I experimented with deep convolutional neural network using original image as input.
 - No hand crafted features are used
- Dimensionality reduction technique applied (if any)
 - ♦ None
- Segmentation strategy used (if any)
 - ♦ None
- Other techniques/strategy used not included in previous items FOR DATA PREPROCESSING (if any)
 - None
- Classification details
 - Classifier or method used to train and validate your results (if any)
 - Deep convolutional neural network
 - Large scale strategy (if any)
 - Deep convolutional neural network has been already used for other large dataset having more than 1 million images
 - Compositional model used (scene context representation), i.e. pictorial structure (if any)
 - None
 - Other technique/strategy used not included in previous items FOR CLASSIFICATION (if any)
 - None
- Global Method Description
 - Total method complexity
 - It took me roughly 1 day (using GPU) to train 1 deep CNN model

- Which pre-trained or external methods have been used (for any stage, if any)
 - We started from GoogLeNet which is pretrained on ImageNet database
- Qualitative advantages of the proposed solution
 - We didn't used any hand-crafted imaging features for training. Only deep convolutional neural network is used for training. So our experimental method has large flexibility and applicability.
 - We tried to utilize general image dataset (ImageNet and MIRFLIKR) as 'None class' image to discriminate unique cultural event specific objects from daily observed objects in general scene
 - Results of the comparison to other approaches (if any)
 - Evaluation results are not available at the time of writing
 - Novelty degree of the solution and if is has been previously published
 - I published experiments using finetuning from GoogLeNet in the following recent papers.
 - Choi, Sungbin. "Plant identification with deep convolutional neural network: Snumedinfo at lifeclef plant identification task 2015." Working notes of CLEF 2015 conference. 2015.
 - Choi, Sungbin. "Fish identification in underwater video with deep convolutional neural network: SNUMedinfo at LifeCLEF fish task 2015."
- Other details
 - Language and implementation details (including platform, memory, parallelization requirements)
 - C++, Caffe library with using NVIDIA Titan GPU
 - Human effort required for implementation, training and validation?
 - We implemented experimental code on top of Caffe library.
 - Training and validation step is processed automatically without manual intervention
 - Training/testing expended time?
 - Roughly 1 day is spent for training each CNN model.

- For testing, it took roughly 5 minutes to get scores from one CNN model
- General comments and impressions of the challenge?
 - I enjoyed participating this challenge. Thank you.