Team name	ZJU
Team leader name	Zhuowei Cai
Team leader address, phone number and email	Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, China. 86-13302720577 iamcaizhuowei@gmail.com
Rest of team members	Limin Wang Xiaojiang Peng
Team website URL (if any)	

Title of the contribution	Articulated Pose Estimation with Mixtures of Parts
General method description	This is a human pose estimation method in static images based on part model. It employed mixture of parts to capture the orientation of body, especially limbs. The learning algorithm learns the most likely co-occurence relationship among different orientation of body parts. Testing algorithm subsequently searches for the most likely scenario of body parts in static images.
References	[1] Articulated Pose Estimation with Flexible Mixtures-of-Parts CVPR 2011

Describe data preprocessing techniques applied (if any)	None.
Describe features used or data representation model (if any)	Using Histogram of Oriented Gradient (HOG) Features.
Dimensionality reduction technique applied (if any)	None.
Compositional model used, i.e. pictorial structure (if any)	Tree structure of human body model.
Segmentation strategy used (if any)	None.

Large scale strategy (if any)	None.
Temporal coherence and/or tracking approach considered (if any)	None. (Based on static images.)
Transfer learning strategy (if any)	None.
Other technique/strategy used not included in previous items (if any)	None.
Method complexity	Training employ dynamic programming. It has to loop over L(locations) x T(types) possible parent locations and types in the tree. So it takes O(L ² T ²) time to train the model.

Qualitative advantages of the proposed solution	The human part model has been trained on <i>Parse</i> dataset. Can be directly and robustly applied on Track 1. No need to train model on the given training data.
Results of the comparison to other approaches (if any)	None.
Novelty degree of the solution and if is has been previously published	Not novel. Has been published in CVPR 2011. Entitled as <i>Articulated pose estimation with flexible mixtures of parts</i> .

Language and implementation details (including platform, memory, parallelization requirements)	Matlab. Windows 7.
Human effort required for implementation, training and validation?	None.
Training/testing expended time?	Testing : ~8 hours.
General comments and impressions of the challenge	Quite interesting. Hope to have such kind of competitions every year.