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II. CONTRIBUTION DETAILS

A. Sign Language Recognition Based on Whole-body Pose
Estimation and Multi-modal Ensemble

Sign language is a visual language that is used by deaf
or speech impaired people to communicate with each other.
Sign language is always performed by fast transitions of
hand gestures and body postures, requiring a great amount
of knowledge and training to understand it. Sign language
recognition becomes a useful yet challenging task in com-
puter vision. Skeleton-based action recognition is becoming
popular that it can be further ensembled with RGB based
method to achieve state-of-the-art performance. However,
skeleton-based recognition can hardly be applied to sign
language recognition tasks, majorly because skeleton data
contains no indication of hand gestures or facial expressions.
Inspired by the recent development of whole-body pose
estimation [1], we propose recognizing sign language based
on the whole-body key points and features. The recognition
results are further ensembled with other modalities of RGB
and optical flows to improve the accuracy further. In the
challenge about isolated sign language recognition hosted
by ChaLearn using a new large-scale multi-modal Turkish
Sign Language dataset (AUTSL) [2]. Our method achieved
leading accuracy in both the development phase and test
phase.

B. Introduction and Motivation

Isolated sign language recognition can be seen as a video
classification task. The isolated sign language recognition is
also very similar to human action recognition. So in this

Fig. 1. Workflow of the proposed multi-modal sign language recognition.
We use four modalities in RGB track. We train them separately and
ensemble their results after FC layer to obtain our final predictions.

section, we will introduce the methods of action recognition
and discuss their limitation on isolated sign language tasks.

The state-of-the-art methods on action recognition tend
to use a 3D convolution architecture to capture spatio-
temporal information from the input videos [3], [4], [5], [6].
However, such approaches require a very large-scale dataset
due to their huge amount of parameters caused by the 3D
convolutional layers. 3D convolution-based methods perform
better in the recent large dataset such as Kinectics-600 [7].
Smaller datasets often deliver less satisfying results due to
overfitting. In isolated sign recognition, the available datasets
are always much smaller than action recognition which is not
suitable for those large 3D convolutional networks. Another
approach to action recognition is using skeleton-based data
to recognize human actions.

Spatial temporal Graph Convolutional Network (ST-GCN)
was first introduced to handle skeleton-based action recogni-
tion in [8]. The authors constructed the skeleton graph to be
the natural connection of the human body. They proposed
a spatial temporal graph convolutional module to extract
both the spatial and temporal information from the input
skeleton graph data. There have been efforts to improve ST-
GCN in terms of adaptive graph learning and multi-stream
ensemble [9], and decoupling the GCN layers to boost the
graph modeling capacity [10]. They also find that ensemble
a skeleton-based model with RGB based model delivers
better overall accuracy than both models. Those GCN-based
methods always limit themselves to datasets that provide
ground-truth keypoints because pre-trained pose estimation
models do not always give a reliable estimation of poses,
which introduces a bunch of noises and harms their accuracy
on the action recognition task.

In sign language recognition, skeleton-based methods of-
ten give lower performance simply because the skeleton does
not contain the keypoints of hands gesture. If we want to
add hand keypoints to the skeleton using a hand detector
and hand pose estimator, the outcomes always fail us. The



Fig. 2. Example of whole-body pose estimation on AUSL dataset. Note
that this video is mirrored. The right hand of the signer is blurred due to
its fast motion. Conventional hand detectors will fail in such cases. But
whole-body pose estimation algorithm can still provide faithful keypoints
estimation because it utilizes global information of the other body parts.

hand detector performs poorly as it always lost the targets
due to the limitation in resolution or motion blur. The recent
development on whole-body pose estimation [1] encourages
us to use whole-body pose estimation methods to obtain
faithful keypoints of hands, see Fig. 2. We find that the
whole-body pose estimation model is able to estimate the
location and keypoints of hands based on global information
of arms. Naturally, we propose to use whole-body pose
keypoints to recognize sign language via a multi-stream GCN
model with graph detection and graph dropout. It turns out
that our proposed whole-body skeleton-based sign language
recognition gives an accurate recognition rate.

Studies on action recognition have revealed that multi-
modalities can further improve the performance of recog-
nition. Therefore, in the RGB track, we add three more
modalities to assemble with skeleton-based approach intro-
duced above. First, we extract the feature from the pre-
trained whole-body pose model frame by frame and use
them as the input to a model consists of spatial and tem-
poral convolutional layers and recognize the sign language.
Second, we use RGB frames as another modality and use
3D convolutional models to classify those frames. Last, we
extract optical flow from original videos and use the same
model as RGB. Finally, we ensemble the results from all
modalities together and generate our final prediction. The
overall workflow is shown in Fig. 1. Our approach achieves
the 1st rank in this challenge in both the development phase
and test phase, see Table I.

C. Detailed method description

In RGB track, we use four modalities including whole-
body pose keypoints, whole-body pose features, RGB frames
and optical flows to obtain our final predictions. In this

Fig. 3. Whole-body skeleton graph after graph deduction. 133 keypoints are
reduced to 27 keypoints containing upper body skeleton (including nose and
eyes) and hands keypoints only. In the spatio-temporal graph construction,
each keypoint is spatially connected to its adjacent keypoints and also to
itself in temporal dimension.

section, we introduce each modality one by one and present
the ensemble method we used to obtain the final prediction.

1) Skeleton keypoints: The whole-body pose network esti-
mate 133 keypoints from the detected person, including facial
landmarks, body skeleton, hands, and feet keypoints. We
construct a spatio-temporal graph by connecting the spatially
adjacent keypoints according to the natural connections of
human body, and keypoints to themselves temporally. The
large number of keypoints introduces a lot of noise to the
model. Simply feeding such a whole-body graph contain-
ing all the estimated keypoints gives very low accuracy.
Therefore, according to the observations on the data and the
visualization of GCN activations, we do a graph detection
and trim down the 133 keypoints to 27 keypoints only. The
remaining graph is shown in Fig. 3. Our experiments show
that those 27 keypoints contain all the information we need
to do sign language recognition. Such graph deduction gives
faster model convergence and higher accuracy.

Inspired by [9], we use four streams in our GCN model,
which are joint, bone, joint motion, and bone motion. Bone
data are generated by representing joint data in a vector form
using the natural connection of the human body. Motion
data are generated by subtracting a frame by its previous
frame. We train one model for each stream separately and
combine their predicted results before the softmax layer by
simply adding them together with weights. Each stream uses
data augmentation, which randomly flips, rotates, scales, and
shifts the input keypoints location. We use a video length of
150. If a video has lesser frames than 150, we repeat that
video until we get 150 frames. The coordinates of keypoints
are normalized to [-1,1]. Based on ST-GCN, we implement
a STC (spatial, temporal, and channel) attention module
described in [9] to improve the predicted accuracy. We adopt
the Decoupled-GCN and DropGraph module in [10] to boost
GCN modeling capacity with no extra computation cost and
avoid overfitting.

2) Skeleton features: Besides using key point coordinates
generated from the whole-body pose network, we also pro-
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Fig. 4. The pipeline of Sign Language Recognition based on skeleton features.

pose a model to recognize the sign language with whole-body
features. We extract 33 landmarks from 60 frames of each
video as the input of our model, which contain 1 landmark
on the nose, 4 landmarks on the mouth, 2 landmarks on
shoulders, 2 landmarks on elbows, 2 landmarks on wrists,
and 22 landmarks on hands. All the features are down-
sampled to 24 × 24 using max pooling. Instead of using
3D convolution, we process the input features with a 2D
convolution layer separably, which is easier to converge. The
pipeline is shown in Figure 4. There are four stages in total.
In the first stage, we reshape the features from 60 × 33 ×
24×24 to 60×792×24, and feed them to 1×1 convolution
layers, which means we only process temporal information
in this stage. Then we shuffle the features and divide them
into 60 groups, and utilize grouped 3 × 3 convolution to
extract temporal and spatial information among the same key
point features from different frames. In this stage, temporal
information and part of spatial information are processed. In
the third stage, the features are shuffled again and divided
into 33 groups. We still use grouped 3× 3 convolution, but
only spatial information in each frame is extracted. Finally,
a couple of 3 × 3 fully connected layers are implemented
to generate prediction features. In the first 3 stages, all the
output is added by a residual. Moreover, a dropout layer is
deployed in each module to avoid over-fitting.

3) RGB and optical flow: As mentioned in Section II-B,
studies on action recognition have revealed that multi-modal
ensembles can further boost each modality’s performance.
So we also implement traditional modalities of RGB frames
and optical flows using 3D convolutions. As mentioned in
Section II-B, most 3D convolutional architectures suffer from
overfitting, especially on smaller datasets due to the large
number of parameters in 3D convolutional layers. In our

experiment, we have tried large capacity 3D convolutional
nets like Resnet3D [3], [11], SlowFast [4], SlowFast with
Bert [5], which are commonly used in action recognition.
All the above models are hard to be trained on this relatively
smaller-scale sign language recognition dataset. Loading pre-
trained models on large-scale action recognition datasets
such as Kinectics dataset [7] do improve the accuracy a little,
but the performance of those 3D convolution networks is still
quite low.

In our study, we find out that Resnet2+1D [6], which
decouples spatial and temporal convolution and does them
one after another, provides the best results among the above
3D convolutional architectures. We find that increasing the
architecture’s depth does not improve the performance and
is easier to overfit. So in our experiments, we choose
Resnet2+1D-18 with weights pre-trained on Kinectics dataset
as our backbone network for both RGB and optical flow
modalities. For RGB data, we pre-train the model on the Chi-
nese Sign Language (CSL) dataset [12] as well to improve
the model convergence. We find that pre-training on CSL
can reduce the training time and improve the final accuracy
by around 1%.

Studied in [13], using one-hot labels with cross-entropy
loss results in overfitting in some cases. So we adopt the label
smoothing technique to alleviate such effect. Mathematically,
label smoothing can be represented as

q′(k|x) = (1− ε)δk,y + εu(k), (1)

where q′(k|x) is a new form of predicted distribution, ε
is a hyper-parameter between 0 and 1, u() is a uniform
distribution and k is the number of classes. The cross-entropy
loss can then be replaced as



H(q′, p) = −
K∑

k=1

log p(k)q′(k) = (1−ε)H(q, p)+εH(u, p),

(2)
where such representation can be regarded as a combination
of penalties to the difference between predicted distribution
with real distribution and prior distribution (uniform distri-
bution). In our experiment, we set ε to be 0.1 and observe
0.5% to 1.0% gain in predicted accuracy for both RGB and
optical flow modalities.

4) Multi-modal ensemble: We use a simple ensemble
method to ensemble all four modalities above. Specifically,
we save the output of the last fully-connected layers of each
modality before softmax layer. Those outputs have the size
nc where nc is the number of classes. We assign weights to
the every modality according to their accuracy on validation
set and sum them up with weights as our final predicted
score

score = α1qskel + α2qRGB + α3qflow + α4qfeat, (3)

where q represents the result of each modality, α1,2,3,4 are
hyper-parameters to be tuned based on ensemble accuracy
on validation set. We find the maximum score as our final
predicted classes. In our experiments, we use [1,0.9,0.4,0.4]
for RGB track. We have tried other ensemble methods such
as early fusion or training fully-connected layers to ensemble
the final prediction. Despite that, we find that the simplest
method we presented above gives us the best accuracy. We
are going to submit a workshop paper which includes more
details of our method.

D. Challenge results and final remarks

Our team (smilelab2021) ranked 1st in both development
phase and test phase in both RGB and RGBD tracks. Our
rankings and accuracy can be found in Table I and are also
shown in the leaderboard of the challenge track 1 2).

TABLE I
LEADERBOARD: RESULTS OBTAINED BY THE PROPOSED APPROACH.

Phase Track Rank position Rec. Rate
Development RGB 1 97.03
Test RGB 1 98.42

III. ADDITIONAL METHOD DETAILS

Please reply if your challenge entry considered (or not)
the following strategies and provide a brief explanation.
• Did you use any kind of depth information (directly,

such as RGBD data, or indirectly such as 3D pose
estimation trained on RGBD data), either if during
training or testing stage? ( ) Yes, (X) No

1RGB: https://competitions.codalab.org/
competitions/27901#results

2RGB+D: https://competitions.codalab.org/
competitions/27902#results

• Did you use pre-trained models? (X) Yes, ( ) No
We used Resnet2+1d pre-trained on Kinectics dataset
[7].

• Did you use external data? (X) Yes, ( ) No
For RGB modality, we pre-trainined our models on
Chinese Sign Language dataset [12] before training on
the challenge dataset. The pre-trained model is provided
in our google drive. We didn’t use external data for the
other modalities such as keypoints, features and optical
flow.

• Did you use other regularization strategies/terms?
(X) Yes, ( ) No
We used label smoothing and weight decay as regular-
ization in training our models.

• Did you use handcrafted features? ( ) Yes, (X) No

• Did you use any face / hand / body detection,
alignment or segmentation strategy? ( ) Yes, (X) No

• Did you use any pose estimation method? (X) Yes,
( ) No
We use wholebody pose estimation algorithm to extract
133-point whole body pose from the input images.
These keypoints include face, hand, body and foot
keypoints. These keypoints is used in our GCN network
as skeleton modality. The features extracted from pre-
trained wholebody pose estimation are used as another
modality. The keypoints are also used to crop frames in
other modalities (RGB and optical flow).

• Did you use any fusion strategy of modalities? (X)
Yes, ( ) No
Since we have multiple modalities (skeleton keypoints,
skeleton features, RGB and optical flow), we adopt a
late fusion techniques that we save the output of the
last fully-connected layers, before softmax, associate
weights to them and sum them up with weights as
our final predicted score. Those weights serve as hyper-
parameters and we tune those parameters based on the
accuracy on validation set.

• Did you use ensemble models? ( ) Yes, (X) No

• Did you use any spatio-temporal feature extraction
strategy? (X) Yes, ( ) No
All of our models such as spatio-temporal GCN and
Resnet2+1D extract spatio-temporal features from the
input data sequence before feeding to the last fully-
connected layer for classification.

• Did you explicitly classify any attribute (e.g.
gender)? ( ) Yes, (X) No

• Did you use any bias mitigation technique (e.g.
rebalancing training data)?
( ) Yes, (X) No



IV. CODE REPOSITORY

We have made our code public to reproduce our results
and facilitate the research on sign language recognition. We
upload pre-trained models and preprocessed test data as well.
We also provide an Nvidia docker image for fast deployment
of our environment. Code, pre-trained models, and detailed
instruction can be found in our repository.
Code repository:
https://github.com/jackyjsy/CVPR21Chal-SLR
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