Team name	Seawolf Vision
Team leader name	Vitaly Sergeyev
Team leader address, phone number and email	21-62 Crescent St. Queens, NY 11105 (716) 961 8434 <u>vitaly.sergeyev@stonybrook.edu</u>
Rest of team members	Dr. Dimitris Samaras Kiwon Yun Heeyoung Kwon
Team website URL (if any)	<u>https://sites.google.com/site/</u> <u>sbuchalearnchallenge2014/?pli=1</u>

Title of the contribution	? N/A ?
General method description	I will be closely following the work of Deva Ramanan, who has consistently produced highly ranked research papers in topics such as pose estimation, object detection, and deformable part models. I will be using the paper Articulated Pose Estimation with Flexible Mixtures of Parts by Yi Yang and Deva Ramanan to guide my work. I will also be using the publicly available code toolbox that facilitates this paper. I will have to make several modifications to the code so that I better match what is required in the ChaLearn Challenge as well as attempt to increase the performance to limb detection.
References	 Y. Yang, D. Ramanan. "Articulated Pose Estimation using Flexible Mixtures of Parts" Computer Vision and Pattern Recog- nition (CVPR) Colorado Springs, Colorado, June 2011. Y. Yang and D. Ramanan, Flexible mixtures of parts for artic-ulated pose detection, release 1.3, http://phoenix.ics.uci.edu/software/pose/. D. Ramanan, 'Learning to parse images of articulated bod- ies,' in Advances in Neural Information Processing System, 2007. Hamed Pirsiavash, Deva Ramanan, Charless Fowlkes, 'Globally- Optimal Greedy Algorithms for Tracking a Variable Number of Objects,' Computer vision and Pattern Recognition CVPR 2011, Jun 2011.

Describe data preprocessing techniques applied (if any)	Wrote several scripts (bash and python) for organizing data and preprocessing for learning
Describe features used or data representation model (if any)	HoG
Dimensionality reduction technique applied (if any)	
Compositional model used, i.e. pictorial structure (if any)	MRF Deformable Parts Model
Segmentation strategy used (if any)	

Large scale strategy (if any)	Pose-estimation without segmentation
Temporal coherence and/or tracking approach considered (if any)	
Transfer learning strategy (if any)	
Other technique/ strategy used not included in previous items (if any)	
Method complexity	

Qualitative advantages of the proposed solution	Fairly accurate for finding the region of interest (general location of limb), I should have used some segmentation techniques on top of this to pinpoint the pixel-level limb
Results of the comparison to other approaches (if any)	Not sure of how others are doing The leader board seemed non-existant.
Novelty degree of the solution and if is has been previously published	Not original. Mostly examining other works in the field. Editing open-source code, but nothing that stands out as absolutely novel.

Language and implementation details (including platform, memory, parallelization requirements)	Used MATLAB mostly and a couple of bash/python scripts for data-processing. Did everything on my Mac Book Air (8gb memory)
Human effort required for implementation, training and validation?	
Training/testing	Several hours for training,
expended time?	~ one hour for testing
General comments and	Great challenge, I just wish I had more time during the
impressions of the	semester to focus on this challenge.
challenge	Awesome organization :)