

8 – 14 September 2018 | Munich, Germany

Video De-Captioning using U-Net with Stacked Dilated Convolutional Layers.

ChaLearn Video Decaptioning Challenge

Team : Shivansh Mundra Mehul Kumar Nirala Sayan Sinha Arnav Kumar Jain

Who are we?

Well, we are a bunch of undergraduates from India bonded together as a research community in Indian Institute of Technology, Kharagpur, India.

Let's break down into steps

- Introduction
- Related Works
- Main Contribution
- Dataset
- Results
- Conclusion
- Future Work

Introduction

Aim: To develop algorithms to remove text overlays in video sequences

The problem of Video De-Captioning can be broken down into two phases:

- **De-Captioning** of individual frames
- Processing the data as **continuous frames** of the videos

Related Works

- Video Inpainting by jointly learning temporal structure and spatial details.
 - Wang et al.
 - Main Contributions
 - Take mask as input.
 - Temporal structure inference by 3D Convolutional Networks.
 - Spatial details completion by Comb Convolutional Networks.
- Image Denoising and Inpainting with deep neural networks. (NIPS 2017)
 - Used stacked sparse denoising encoder-decoder architecture.
 - Images were of specific genre.
 - Dataset used for experimentation had gray scale images.

Why not use state-of-the art method for video/image inpainting?

- Video frames were not from a specific class/genre
- Trained on specific classes.
- Low resolution videos doesn't allow flexibility in exploring deep architectures.

Corrupted

Deep image prior

Main Contribution

- U-Net based encoder-decoder architecture
- Stacked **Dilated Convolutions layers** in encoder in the architecture
- Residual connections of convolutions in the bottle neck layer of

encoder-decoder

• Converted all data to TFRecords for better performance

What is U-Net?

An encoder decoder based image segmentation model is used a lot for medical imaging, segmentation etc.

Features of U-Net Architecture

- Encoding with 3x3 kernel (no padding) followed by ReLu units
- Decoding part with 2x2 deconvolution at a time
- Concatenation of symmetrical layers in encoder-decoder

Stacked dilated Convolutional Layers

- Dilated convolutions introduce another parameter called the **dilation rate**
- Defines spacing between the values in a kernel
- A 3x3 kernel with a dilation rate of 2 will have the same field of view as a 5x5 kernel, while only using 9 parameters
- Imagine taking a 5x5 kernel and deleting every second column and row

Why Stacked dilated Convolutional Layers ?

- Discrete Convolutions gives output of adjacent pixel space.
- Dilations increase the total receptive field
- Dilated convolutions are especially promising for image analysis tasks requiring detailed understanding of the scene
- Dilated Convolutions avoids needs of upsampling
- This delivers a wider field of view at the same computational cost

Residual Connections in bottle neck layer

- Residual connections are helpful for simplifying a network's *optimization*.
- They are used to allow gradients to flow through a network directly, without passing through non-linear activation functions.

Loss functions

• We trained our model on MSE loss and regularized it by **Total Variation Loss** and **PSNR** loss.

Total Variation Loss -:

Prediction Pipeline

- For predicting test videos we used approach given in baseline
- Divide image into 16 equal squares
- Check whether a square contain text
- Replace with original if doesn't contain text

Features of Dataset

- Video duration : 5 sec
- Number of frames : 125
- Resolution of single frame : 128x128x3
- Train-val-test split :
 - Training 10,000 videos
 - \circ $\,$ Val 5,000 videos $\,$
 - Test 5,1000 videos
- Videos were from diverse classes collected from Youtube
- Percentage of area covered from text was variable between 10%-60%

Results

Results	MSE	PSNR	DSSIM
Baseline	0.0022	30.1856	0.0613
Ours	0.0012	32.1713	0.0482

Average Execution time for converting single video - 5 sec

Our Solution Architecture

Rank ↓≞	User 🎝 🗍	<rank> 🗍</rank>	MSE ↓ĵ	PSNR 🎵	DSSIM 🗍
None	KAIST-RCV -	2.6667	0.0011	33.3527	0.0404
None	ucs	3.3333	0.0011	33.0052	0.041
None	hcilab 🗸	3.0	0.0012	33.0228	0.0424
None	anubhap93 -	3.6667	0.0012	32.0021	0.0499
None	arnavkj95 -	4.0	0.0012	32.1713	0.0482
None	Baseline	4.3333	0.0022	30.1856	0.0613

The problem of **De-Captioning**

The problem of De-Captioning was different from the usual problem of **inpainting** :

- Position and orientation of subtitles was specified (in center bottom)
- Inpainting involves filling a whole region/patch
- De-Captioning involves inpainting of regions which are covered by texts.

Conclusions

- Encoder-Decoder network can be used for inpainting/decaptioning
- Our solution doesn't require **mask** as input hence we were able to decrease computation time
- The proposed solution can be applied to any class of video-to-video or image-to-image translation in very less execution time
- Old GANs approaches weren't able to generalise well in the dataset from domains.

Conclusions...

• We tried regularizing our model with VGG feature loss which resulted in more appealing videos but MSE error increased

Future Works

- Exploiting Temporal relations in Videos
 - Temporal context and a partial glimpse of the future, allow us to better evaluate the quality of a model's predictions objectively.
 - Can take advantage of the frames in stack which don't have subtitles
 - 3D Convs can extract temporal dimension with motion compensation.
- Diverging from end-to-end learning
 - Training first to predict mask, then inpaint corresponding mask.

That's All

Thanks!

Indian Institute of Technology Kharagpur.

