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Problem Statement

Chalearn LAP Inpainting Competition Track1 - Inpainting of still
images of humans

Objective To restore the masked parts of the image in a way that
resembles the original content and looks plausible to a human.

Dataset
The dataset consists of images with multiple square blocks of black
pixels randomly placed, occluding at most 70% of the original image.
The dataset is taken from multiple sources- MPII Human Pose
Detection, Leeds Sports Pose Dataset, Synchronic Activities Stickmen
V, Short BBC Pose and Frames labelled in Cinema.
28755 training samples, 6160 validation samples and 6160 test samples.
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Introduction

Image Inpainting is the task of filling missing pixels of an image.

The main challenge of the task is to generate realistic and
semantically plausible pixel for the missing regions that blends
properly with the existing image pixels.
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Related Works

Early works [1] [2] [3] use patch based methods to solve the problem.

They copy matching background patches into the holes.
These paper works well in background inpainting tasks.
They can’t synthesize novel structures.
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Related Works

New deep methods use CNN and GAN networks to formulate the
solution and have produces promising results for image inpainting.

These methods train encoder-decoder network jointly with adversarial
networks to produce pixels which are coherent with the existing ones.
They can’t model long term correlations between distant contextual
information and hole regions.
Produces boundary artifacts, distorted structures, blurry textures
inconsistent with surroundings.
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Related Works

More recently, Globally and locally consistent image completion [4]
CVPR 2017 paper, improve the results by introducing local and global
discriminators. In addition, it uses dilated convolutions to increase the
receptive fields and replace the fully connected layers adopted in the
contextual encoders.
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Proposed Solution: Image Inpainting generator with
skip-connections

We use an encoder-decoder based CNN model with a combination of
regular and dilated convolutions followed by batch normalization and
ReLU to encode the partial image.

The decoder uses skip connections from the encoder and combination
of deconvolution and convolutions to generate the full image.

Inputs
The input to the model is 128*128*4 sized tensor which is
concatenation of the input image and the mask.
We use data available in the ’maskdata.json’ file to generate binary
mask images. The masks contain ones in places of holes and zeros
everywhere else.
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Network Architecture

Figure: Architecture of the discriminator module of
the inpainting network. Each building block is
described in Figure 9.

Figure: Building
blocks of the
network.
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Network Architecture

Figure: Architecture of the generator module
of the inpainting network. Building block is
shown in Fig 9.

Figure: Architecture of the
discriminator module of the
inpainting network.Building
block is shown in Fig 9.
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Loss Functions

Following loss functions have been used to train the network-

Reconstruction Loss [5]
Lr = 1

K

∑K
i=1 |I ix − I iimitation|+ α ∗ 1

K

∑K
i=1(I iMask − I iMask)2

where, K is the batch size and alpha = 0.000001 and I iimitation is the
output of the decoder.

Adversarial Loss [5] Lreal = −log(p), Lfake = −log(1− p)
Ld = Lreal + β ∗ Lfake
where, p is the output probability of the discriminator module and β
= 0.01 (hyper parameter)

Perceptual Loss [6]
Lp = 1

K

∑K
i=1(φ(Iy )− φ(Iimitation))2

where, φ represents features from VGG16 network pretrained on
Microsoft COCO dataset.
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Training

The network is trained using Adam Optimizer with learning rate 0.001
and batch size 12.

For first 5 epochs only the generator module of the network is trained
minimizing only the reconstruction loss and perceptual loss

For the next 15 epochs, the entire GAN network [5] is trained
end-to-end minimizing Adversarial and Perceptual loss.
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Results

With our proposed solution we secured 2nd position in the
competition.

To evaluate the quality of the reconstruction, metrics as mentioned
on the competition’s website are used.

Evaluation Metrics Training Phase Testing Phase

PSNR 20.4314 21.5118
MSE 0.0176 0.0158
DSSIM 0.2089 0.2048
WNJD 0.1488 0.1495

Anubha Pandey, Vismay Patel (IITM) Track1: Image Inpainting 19th September 2018 13 / 20



Results

With our proposed solution we secured 2nd position in the
competition.

To evaluate the quality of the reconstruction, metrics as mentioned
on the competition’s website are used.

Evaluation Metrics Training Phase Testing Phase

PSNR 20.4314 21.5118
MSE 0.0176 0.0158
DSSIM 0.2089 0.2048
WNJD 0.1488 0.1495

Anubha Pandey, Vismay Patel (IITM) Track1: Image Inpainting 19th September 2018 13 / 20



Results

Figure: Input Image
Figure: Generated
Image

Figure: Ground
Truth
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Conclusion

We propose a generative solution for the image inpainting task.

We have trained our model to generate patches which has not appear
anywhere in the scene.

Also, it has learn to inpaint images with randomly placed masks of
variable size.
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Future Work

We aim to improve the resolution of the inpainted image by using
multi-stage GANs at different resolution.

Moreover, techniques to handle the multiple modalities of the image
and using loss functions related to pose estimation would help
improve the results.
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Thank You
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