

2018 ChaLearn Looking at People Challenge

- Track 2. Video Decaptioning

DVDNet

Deep Blind Video Decaptioning with 3D-2D Gated Convolutions

Dahun Kim*, Sanghyun Woo*, Joonyoung Lee, In So Kweon

Our Problem

Remove text overlays in video

Need to consider two important points:

- 1. Video : Sequence of frames)
- 2. Blind : No inpainting mask)

Model Overview

Two important points :

- Video : Sequence of frames
- Blind : No inpainting mask

- 3D-2D U-net
- Residual learning
- + Gated convolution

Vanilla 2D U-Net*

Frame-by-frame operation

• Spatial context

Input : Multiple frames

Scene dynamics

• Aggregate hints from **spatio-temporal** neighborhoods

 \rightarrow Object movements

\rightarrow Subtitle changes

Vanilla 3D U-Net*

Multiple frame prediction

- Hard problem
- Heavy
- Not uniform prediction

Output : Single frame

Focus on a single frame

• Aggregate hints from lagging and leading frames.

Lagging frames

Leading frames

3D-2D U-Net

• Easy problem

oth have a lot

common we do yeah

you'll get along just fine

- Light-weight
- Temporal view range

Center frame

both have a

vou'll get along just

common we do yeah

Output

3D-2D U-Net architecture

Focus on a single frame

 \rightarrow to match the shape and concatenate.

Residual Learning

Blind : No inpainting mask ٠

- Not touching good pixels
- Focus on the corrupted regions

KAIS

+ Attention

Gated Convolution*

 $Gate = \sigma(W_g \otimes Input)$ $Feature = \phi(W_f \otimes Input)$ $Out = Feature \odot Gate$

KAIS

* Yu, J. et al. "Free-form image inpainting with gated convolution". arXiv preprint arXiv:1806.03589.

Loss Function

L1 + gradient L1 + SSIM loss

Quantative Results

User It	MSE 🎵	PSNR 🎵	DSSIM 🎝
KAIST-RCV -	0.0011	33.3527	0.0404
UCS	0.0011	33.0052	0.041
hcilab -	0.0012	33.0228	0.0424
anubhap93 -	0.0012	32.0021	0.0499
arnavkj95 -	0.0012	32.1713	0.0482
Baseline	0.0022	30.1856	0.0613

Qualitative Results

ſċ√

(d)

2018 ChaLearn Looking at People Challenge

- Track 2. Video Decaptioning

DVDNet

Deep Blind Video Decaptioning with 3D-2D Gated Convolutions

Dahun Kim*, Sanghyun Woo*, Joonyoung Lee, In So Kweon