<sup>2</sup>Dept, of Applied Mathematics and Analysis, University of Barcelona, Barcelona, Spain

<sup>3</sup>Comuter Vision Center, Autonomous University of Barcelona, Spain

Email: masadia@ce.sharif.ir

# **Action Recognition from RGB-D Data:** Comparison and Fusion of Spatio-temporal Handcrafted Features and Deep Strategies



Montalbano II:





## **Abstract**

- Multimodal fusion of RGB-D data are analyzed for action recognition by using scene flow as early fusion and integrating the results of all modalities in a late fusion fashion.
- Multimodal dense trajectory (MMDT) is proposed to describe RGB-D videos as handcrafted features.
- Multimodal 2D CNN (MM2DCNN) is proposed as the extension of 2D CNN by adding one more input stream (scene flow).
- The proposed methods are evaluated on two action datasets.
- Fusion of handcrafted and learning-based features achieved the state of

# Introduction

- Action recognition is an active research area with potential applications of health-care monitoring, interactive gaming, surveillance, and robotics.
- ☐ Microsoft Kinect have facilitated capturing of low-cost depth images in real-time alongside color images (multimodal data).
- Late fusion of RGB, depth, and motion-based representations (like optical flow) is an effective method for action recognition.
- □ Scene flow [1] is the real 3D motion of objects that move completely or partially with respect to a camera.
  - ✓ Considered as Early fusion of RGB and depth.
    - Preserving 3D motion data on the spatial structure of both modalities.
  - ✓ More discriminative than optical flow,
  - When it is significant motion perpendicular to the image plane,
- ✓ Invariant to the distance between objects and the camera.
  - In 3D world, distance between two objects does not depend on the relative position to the camera while the same movement performed at different position may produce different optical flow in terms of



- MMDT is presented as a handcrafted representation.
- > Dense trajectories (DT) [2], pruned by exploiting scene flow data,
- > Histogram of normal vector (HON) is extracted from normal vectors of
- ☐ MM2DCNN is presented as learning-based features.
  - > By the incorporation of scene flow information as a new model.
  - Late fusion: score averaging of the result of multi streams 2DCNN [3,4] (RGB, optical flow, and scene flow)
- ☐ Second fusion: combination of handcrafted and deep models.
- ✓ Handcrafted: powerful in describing motion information,
- ✓ Deep learning: good at describing appearance data.

# **Denoising and RGB-D Alignment**

- Missing pixels in depth images due to:
- × Limitations of the IR sensor,
- × Special reflectance materials,
- × Distance from the objects to the camera.
- ✓ Interpolating zero value pixels by its surrounding data,
- √ Hybrid median filter (HMF) to reduce pixel flickering,
  - Compute medians for different spatial directions
- Horizontal/vertical + diagonal
- Compute the median of both of them

#### ■ RGB-D alignment

- × IR and optical cameras are separated.
- ✓ Warp the color image to fit the depth one.
- Use the intrinsic (focal length and the distortion model) and extrinsic (translation and

# **Denoising and RGB-D Alignment**

# rotation) camera parameters.

# Multimodal Dense Trajectory (MMDT

**HON** descriptor

☐ Compute scene flow along the trajectories.

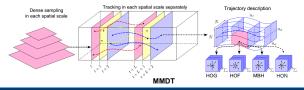
☐ New source of information; i.e., depth maps.

 $\Box$  Each normal is represented by **two angles**  $\theta$  and  $\varphi$ :

- Pruning dense trajectories.
  - By the information achieved by scene flow in meters.
- ✓ Scene flow is invariant to the position of the subject relative to the camera
- ✓ Scene flow has an additional dimension, which allows the measurement of motion through Z-axis.

•  $0 < \theta < \pi$  and  $-\pi/2 < \varphi < \pi/2$ ,  $\Box$  5 bins are considered, (size of  $\pi/4$  radians), total of 25 bins for sub-histogram

☐ The final descriptor is the **concatenation** of 12 sub-histograms results in 300 dimensions.



# Video Summarization

- × Deep methods mostly select a fixed number of frames with equal temporal spacing between them. Thus, some relevant information might be lost.
- ✓ Key frames selection
  - Select relevant visual information to discriminate actions.
- · Keeping the size of the data small.

## ☐ Sequential Distortion Minimization (SeDiM) [4]

- . The distortion between the original video and the synopsis video is minimized,
- · Computationally feasible and discriminative way to extract key frames.



Key frames of three samples

# Multimodal 2D CNN (MM2DCNN)

## Three streams with 2D CNN (VGG-16)

- Spatial network (RGB)
  - Operating on key frames.
  - Using a pre-trained network on UCF-101.

## ☐ Temporal network (Optical flow)

- Using volumes of stacking optical flow fields between several consecutive frames.
- Using a pre-trained network on UCF-101.

## ☐ Temporal network (Scene flow)

- Consider three dimensions of scene flow as three input channels,
- Using a pre-trained model of its own RGB model.

63.125 78.13

# **Experimental Result**

## MSR Daily Dataset:

#### MMDT:

| Table | 1: DT and MMDT accura | cy on MS | RDaily Act. 3D. | Table | 2: DT and MMDT accur  | acy on | Montalbar | o II. |
|-------|-----------------------|----------|-----------------|-------|-----------------------|--------|-----------|-------|
|       | Descriptors           | DT       | MMDT            |       | Descriptors           | DT     | MMDT      |       |
|       | HOG (RGB)             | 43.125   | 45.625          |       | HOG (RGB)             | 67.3   | 67.3      |       |
|       | HON (Depth)           | -        | 72.5            |       | HON (Depth)           | -      | 77.67     |       |
|       | HOF + MBH (Opt. flow) | 62.5     | 70              |       | HOE + MBH (Opt. flow) | 82.0   | 82.0      |       |

#### MM2DCNN:

Table 3: Accuracy for SeDiM on MSR Daily Activity 3D.

| Model       | RGB   | Depth | RGB-D | Random |
|-------------|-------|-------|-------|--------|
| RGB         | 53.91 | 53.12 | 53.91 | 53.12  |
| Opt. flow   | 55.47 | 57.81 | 55.47 | 55.70  |
| Scene flow  | 67.19 | 68.75 | 66.41 | 64.84  |
| Late Fusion | 70.08 | 71.65 | 70.08 | 69.29  |

| Model       | RGB   | Depth | RGB-D | Random |
|-------------|-------|-------|-------|--------|
| RGB         | 96.03 | 97.06 | 95.72 | 97.06  |
| Opt. flow   | 61.06 | 59.74 | 60.67 | 64.24  |
| Scene flow  | 69.90 | 69.68 | 69.02 | 70.93  |
| Late Fusion | 96.28 | 96.25 | 96.16 | 97.06  |

Table 4: Accuracy for SeDiM on Montalbano II.

83.5 85.66

#### Second Late Fusion of MMDT and MM2DCNN:

Table 5: Second late fusion of MMDT and MM2DCNN

| Dataset       | Accuracy |
|---------------|----------|
| MSR Daily     | 82.50    |
| Montalbano II | 97.44    |

## Comparison

| Me                | ethod Accuracy                                    |
|-------------------|---------------------------------------------------|
| EigenJo           | oints 43 58.10                                    |
| Moving            | zPose 44 73.80                                    |
| HON-              | 4D [15] 80.00                                     |
| SSTKI             | Des [16] 85.00                                    |
| Action            | nLet [40] 85.75                                   |
| M                 | MDT 82.50                                         |
| MM2               | 2DCNN 71.65                                       |
| Table 7: Performs | ance comparison on Montalbano  Accuracy/Precision |
| Fernando et al    |                                                   |
| Pigge et al       |                                                   |



rows shows the classification result of each modality.

# References

[1] Mariano Jaimez, Mohamed Souiai, Javier Gonzalez Jimenez, and Daniel Cremers. A primal-dual framework for real-time dense rgb-d scene flow. In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages 98-104. IEEE, 2015.

[2] Heng Wang, Alexander Klaser, Cordelia Schmid, and "Cheng-Lin Liu. Action recognition by dense rajectories. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 3169-3176 IEEE 2011

[3] Karen Simonyan and Andrew Zisserman, Two-stream convolutional networks for action recognition in videos. In NIPS, pages 568-576. 2014.

[4] Limin Wang, Xiong Yuanjun, Wang Zhe, and Qiao Yu. "Towards good practices for very deep twostream convnets." arXiv preprint arXiv:1507.02159 (2015).]

[5] Costas Panagiotakis, Nelly Ovsenian, and Flena Michael, Video synopsis based on a sequential distortion minimization method. In International Conference on Computer Analysis of Images and Patterns, pages 94-101, Springer, 2013.