Multimodal Gesture Recognition Based on the ResC3D Network

Qiguang Miao Yunan Li Wanli Ouyang Zhenxin Ma Xin Xu Weikang Shi

Introduction Our Scheme Experimental Results Future Work

Introduction Our Scheme Experimental Results Future Work

INTRODUCTION

ChaLearn LAP IsoGD

- large-scale
- video-based

C3D model

- 3D ConvNets
- spatiotemporal feature learning
- Auto feature extraction

Introduction Our Scheme Experimental Results Future Work

✓ Generating optical flow data from the RGB one

- $\checkmark\,$ Generating optical flow data from the RGB one
- ✓ Different strategies for video enhancement

the most representative frames

- ✓ Generating optical flow data from the RGB one
- ✓ Different strategies for video enhancement
- ✓ A weighted frame number unification strategy to sample the most representative frames

- ✓ Generating optical flow data from the RGB one
- ✓ Different strategies for video enhancement
- ✓ A weighted frame number unification strategy to sample the most representative frames
- A ResC3D model for feature extraction

- ✓ Generating optical flow data from the RGB one
- ✓ Different strategies for video enhancement
- ✓ A weighted frame number unification strategy to sample the most representative frames
- A ResC3D model for feature extraction
- Using Canonical Correlation Analysis for feature fusion

- ✓ Generating optical flow data from the RGB one
- ✓ Different strategies for video enhancement
- ✓ A weighted frame number unification strategy to sample the most representative frames
- A ResC3D model for feature extraction
- ✓ Using Canonical Correlation Analysis for feature fusion
- SVM classifier for the final score

A. Data enhancement

RGB data Suffering from different illumination condition

depth data The noise exists around the edges

A. Data enhancment

• The results of enhancement with Retinex

A. Data enhancment

• Denoising with median filter

B. Weighted frame unification

- Key frame
 - Divide the video into n sections
 - Calculate the average optical flow for each section
 - The frame numbers of each section are calculated by the proportion of optical flow value of the section and the whole video

C. Feature extraction

C. Feature extraction

D. Feature fusion

- Traditional methods
 - Parallel (averaging)

D. Feature fusion

- Traditional methods
 - Parallel (averaging)
 - Serial (concatenating)

D. Feature fusion

- Canonical Correlation Analysis
 - a way of inferring information from crosscovariance matrices
 - CCA tries to maximize the pair-wise correlations across features with different modalities.

Introduction
Our SchemeCONTENTSExperimental Results
Future Work

Iteration Times

Fusion

EXPERIMENTAL RESULTS Comparison

Method	Accuracy
MFSK+BoVW 34	18.65%
SFAM (Multi-score Fusion) [37]	36.27%
CNN+depth maps [38]	39.23%
Pyramidal C3D [45]	45.02%
2SCVN+3DDSN 5	49.17%
32-frame C3D [19]	49.20%
C3D+LSTM 46	51.02%
proposed method	64.40 %

- J. Wan, S. Z. Li, Y. Zhao, S. Zhou, I. Guyon, and S. Escalera. Chalearn looking at people rgb-d isolated and continuous datasets for gesture recognition. In IEEE CVPR Workshops, pages 56–64. 2016.
- P.Wang,W. Li, Z. Gao, Y. Zhang, C. Tang, and P. Ogunbona. Scene flow to action map: A new representation for rgb-d based action recognition with convolutional neural networks. In IEEE CVPR, 2017.
- P. Wang, W. Li, S. Liu, Z. Gao, C. Tang, and P. Ogunbona. Large-scale isolated gesture recognition using convolutional neural networks. In IEEE ICPR Workshops, 2016.
- G. Zhu, L. Zhang, L. Mei, J. Shao, J. Song, and P. Shen. Large-scale isolated gesture recognition using pyramidal 3d convolutional networks. In IEEE ICPR Workshops, 2016.
- J. Duan, J. Wan, S. Zhou, X. Guo, and S. Li. A unified framework for multi-modal isolated gesture recognition. In ACM Transactions on Multimedia Computing, Communications, and Applications, 2017
- Y. Li, Q. Miao, K. Tian, Y. Fan, X. Xu, R. Li, and J. Song. Large-scale gesture recognition with a fusion of rgb-d data based on the c3d model. In IEEE ICPR Workshops. 2016.
- G. Zhu, L. Zhang, P. Shen, and J. Song. Multimodal gesture recognition using 3d convolution and convolutional lstm. IEEE Access, 2017.

EXPERIMENTAL RESULTS

Team	Accuracy (validation)	Accuracy (testing)
baseline 5	49.17%	67.26 %
XDETVP	58.00%	60.47%
AMRL	60.81%	65.59%
Lostoy	62.02%	65.97%
SYSU_ISEE	59.70%	67.02%
ASU (our)	64.40 %	67.71 %

Introduction Our Scheme Experimental Results Future Work

FUTURE WORK

Thank you !