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Section 1: Introduction
» Proposal: a novel mid-level
representation  for  action/activity

recognition on RGB videos on the basis
of improved dense trajectories (IDT) [1],
fisher vectors (FV), and videodarwin (VD)
(2.

» We model the evolution of features not
only for the entire video, but also on its
subparts (represented as nodes in a
binary tree hierarchically grouping subsets
of IDTs).

» For each node, we compute Node-VD and
Branch-VD. These are later combined with
with VD on the whole video trajectories
(Root-VD) a to perform classification with
SVM.

» Results: better performance than standard
VD (i.e., global-VD) and defines the state-
of-the-art on UCF-Sports [3] and Highfive
[4] action recognition datasets.

Extraction of improved dense trajectories

Hierarchical clustering (unordered binary tree)
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Fig. 1. The pipeline. Each leaf node is represented
in a different color.
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Section 2: Method

Binary tree of trajectory construction

» By recursively applying a divisive spectral
clustering algorithm [5] on the set of
trajectories D.

» For the clustering, we used primitive
trajectory features x, 3.t v, V...

» A tree node i containing the set of
trajectories D; € D expands a temporal
segment (¢;, t';) of the T-frame video, 0 <
t <t <T;.

» LetU; and u; be respectively the matrix of
per-frame FVs and the global FV on D;.

Fig. 2. i -th node
representation:  global
FV for all IDTs assigned
to the node’s cluster,

U;, and matrix of per-
frame FVs, Ui-

Videodarwin: in-a-nutshell

» VD applies any learning algorithm able to
model frame ordering in a sequence. Our
choice is to use a linear regressor we
refer to as v.

» We compute VD in forward and reverse
directions.

» Prior to VD, time varying mean is applied.
Given xGR#(features}x#{timesteps}’ forward
videodarwin (FW) is calculated as follows:
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Note reverse VD simply re-defines mf" to
calculate the varying mean backwards.

» The final VD representation, w, is then:
wiW = y(VEV, (1..T))
whV = y(VRY, (1..T))
w= [(wFW)T RV)T]T

Mid-level representations

» Node-VD representation on node i, i.e.
n;, by taking X = U;. In particular, Root-
VD is just the special case i = 1.

» Branch-VD on node i requires its
ancestors to be represented by their

VFW —

»(w

global FV, u;. We construct i-th node’s
branch as a matrix of per-node global
FVs. That is:

B; = [, /51,152, ..., U]

Then, i-th node’s branch representation,
b;, is computed taking X = B;.
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Darwintree kernel classification

Each tree has an arbitrary number of
nodes and each node is represented by
the combination of Node- and Branch-VD:
s; = [n;b], i>1.

» We define the Darwintree kernel function
kpr between two trees (S,S’) based on
pairwise similarites of their nodes'
representations:

1
1s1] s1 Zsiss Zsi €S ¢(Si_ Sj)v

Vi,j > 1, where ¢(-,-) can be any linear
mapping function (e.g. dot product).
Since root node has no ancestors, we
define a different kernel:
kroot(ny,my) = ¢(ny, n)

» Finally, a linear SVM performs
classification using a linear combination of
kpt and kygot:

kfina1 = (1 — @) kpr + @ koot
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kpr(S,8) =

Section 3: Results

» We validated our method in UCF-Sports
[3] and Highfive [4] datasets.

» Node-VD (N) and Branch-VD (B) against
Darwintrees (DT): DT provided superior
performance than N or B on UCF-Sports.
On Highfive, DT demonstrated its
complementarity with Root-VD.

Method UCF [3] (acc) Highfive [4] (mAP)
F#1 F#2 | TOTAL
N 85.11 76.55 | 70.41 73.48
B 80.85 76.25 | 72.53 74.39
T (N+B) 91.49 76.04 | 70.37 73.21
Root+DT 91.49 79.24 | 72.32 75.78

Table 1. Node-VD (N) Branch-VD (B) versus Darwintrees
(DT) and DT combined with root (Root+DT) at kernel level.
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» We also compared to other SOTA

methods.

[ Method Accuracy (%)
Ours (Root+DT) 91.5
Karaman et al. (2014) 90.8
Ma et al. (2015) 89.4
Wang et al. (2013) 85.2
Ma et al. (2013) 81.7
Raptis et al. (2012) 79.3

Table 2. Results on UCF-Sports dataset.

[ Method mAP
Ours (Root+DT) 75.8
Wang et al. (2015) 69.4
Karaman et al. (2014) 65.4
Ma et al. (2015) 64.4
Gaidon et al. (2014) 62.4
Ma et al. (2013) 36.9
Patron-Pérez et al. (2012) | 42.4

Table 3. Results on UCF-Sports dataset.

Section 4: Conclusions

> A novel mid-level representation for action
recognition on RGB videos.

> We modeled the evolution of features on

both trajectory clusters and on the

hierarchy defining those groupings.

It is applicable to any local

temporal feature representation.

» We demonstrated superior performance

than other SOTA methods, especially for

Highfive.
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